Candidate surname	Other names

Pearson Edexcel International GCSE

Tuesday 15 January 2019

Morning (Time: 2 hours 30 minutes) \quad Paper Reference 4MB1/02R

Mathematics B

Paper 2R

You must have: Ruler graduated in centimetres and millimetres, Total Marks protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

Pearson

Answer ALL ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

Diagram NOT accurately drawn

Figure 1
In Figure 1, $\triangle X Y Z$ has base $X Y$ and height $h \mathrm{~cm}$.
The length of $X Y$ is 7.2 cm , to 2 significant figures.
(a) Write down the lower bound for the length of $X Y$.

The area of $\triangle X Y Z$ is $29 \mathrm{~cm}^{2}$, to 2 significant figures.
(b) Write down the upper bound for the area of $\triangle X Y Z$.
(c) Calculate, to 3 decimal places, the upper bound of h.

Question 1 continued

2 (a) Complete the table of values for $y=x^{2}-3 x+1$

x	-1	0	1	2	3	4	5
y			-1		1	5	

(b) On the grid opposite, plot the points from your completed table and join them to form a smooth curve.
(c) Use your graph to find an estimate for the minimum value of y.
(d) Use your graph to find estimates, to one decimal place, for the solutions of the equation $x^{2}-3 x+1=0$
(e) By drawing a suitable straight line on your grid, find estimates, to one decimal place, for the solutions of the equation $x^{2}-4 x+2=0$

Question 2 continued

Turn over for a spare grid if you need to redraw your graph.

Question 2 continued

Question 2 continued

Only use this grid if you need to redraw your graph.

3 Hugh and Pau are planning to sell ice creams at a charity event.
They buy enough ingredients to make exactly 270 ice creams.
Hugh and Pau make vanilla flavour, strawberry flavour and chocolate flavour ice creams. The numbers of vanilla flavour, strawberry flavour and chocolate flavour ice creams they make are in the ratios $2: 3: 4$
(a) Calculate the number of chocolate flavour ice creams they make.

Hugh and Pau buy all the ingredients for the 270 ice creams at a total cost of $£ 64.80$
They calculate the selling price of each ice cream so that if they sell all 270 ice creams, they would make a profit of $£ 1.20$ on each ice cream.
(b) Calculate the percentage profit that Hugh and Pau would make if they sell all 270 ice creams at their calculated selling price.

At the charity event, Hugh and Pau sell $\frac{8}{9}$ of the 270 ice creams at their calculated selling price.

They then sell the remainder of the ice creams at half this selling price.
(c) Calculate the total profit, in pounds, that they make by selling all 270 ice creams.

Question 3 continued

Question 3 continued

Question 3 continued

Diagram NOT accurately drawn

Figure 2
In Figure 2, $O A C B$ is a trapezium in which $\overrightarrow{O A}=6 \mathbf{a}, \overrightarrow{O B}=6 \mathbf{b}$ and $\overrightarrow{B C}=3 \mathbf{a}$ M is the point on $A C$ such that $A M: A C=1: 3$
(a) Find, in terms of \mathbf{a} and \mathbf{b}, simplifying your answer where possible,
(i) $\overrightarrow{A B}$
(ii) $\overrightarrow{A C}$
(iii) $\overrightarrow{A M}$

The point N is such that $\overrightarrow{O N}=\mu \overrightarrow{O M}$ where $\mu>1$ and such that $B C N$ is a straight line.
(b) Find and simplify an expression, in terms of \mathbf{a} and \mathbf{b}, for $\overrightarrow{O N}$.

Given that the area of $\triangle O A M$ is $12 \mathrm{~cm}^{2}$
(c) find the area, in cm^{2}, of $\triangle N M C$.

Question 4 continued

Question 4 continued

Question 4 continued

5 On the grid opposite, triangle B is the image of triangle A under a single transformation.
(a) Describe fully the single transformation.

Triangle B is transformed to triangle C under the transformation with matrix \mathbf{M} where

$$
\mathbf{M}=\left(\begin{array}{rr}
-1 & 0 \\
-3 & -1
\end{array}\right)
$$

(b) On the grid, draw and label triangle C.

Triangle C is transformed to triangle D under the transformation with matrix \mathbf{N} where

$$
\mathbf{N}=\left(\begin{array}{rr}
3 & -1 \\
-1 & 0
\end{array}\right)
$$

(c) On the grid, draw and label triangle D.

Triangle D is the image of triangle B under a single transformation.
(d) Describe fully this transformation.

Question 5 continued

Turn over for a spare grid if you need to redraw your triangles.

Question 5 continued

Question 5 continued
Only use this grid if you need to redraw your triangles.

6 All 35 students in class 11 T were asked which of rugby (R), cricket (C) and football (F) they like.

Of these 35 students
14 like rugby
20 like cricket
12 like football
6 like both cricket and football
7 like both rugby and football
4 like all three sports
5 do not like any of rugby, cricket or football.
Let x be the number of students in class 11 T who like both rugby and cricket.
(a) Show all this information on the Venn diagram, giving the number of elements in each appropriate subset, in terms of x where necessary.

(b) Find the value of x.
(c) Find
(i) $\mathrm{n}(R \cup F)$
(ii) $\mathrm{n}(R \cap[C \cup F])$

Question 6 continued

Question 6 continued

Some of the 14 students in class 11T, who like rugby, play for a rugby club team.
The incomplete probability tree diagram gives information about these 14 students.

(d) Complete the probability tree diagram.

A student who likes rugby in class 11 T is to be chosen at random.
(e) Find the probability that this student plays rugby for a club team.

Question 6 continued

Figure 3
In Figure 3, $A B C D$ is a circle, centre O.
$E A$ is the tangent to the circle at A.
$E C F$ is the tangent to the circle at C.
$E D O$ is a straight line.
$\angle O E C=27^{\circ} \quad \angle B C F=59^{\circ} \quad E C=12 \mathrm{~cm}$
(a) Explain why $\angle O C E=90^{\circ}$
(b) Calculate the area, in cm^{2} to 3 significant figures, of $\triangle O E C$.
(c) Giving reasons, calculate the size, in degrees, of $\angle A B C$.
(d) Calculate the size, in degrees, of $\angle A D C$.
(e) Calculate the size, in degrees, of $\angle B A O$.

Question 7 continued

Question 7 continued

Question 7 continued

8 Solve the simultaneous equations

$$
\begin{array}{r}
2 x^{2}+y^{2}=6 \\
x-2 y=3
\end{array}
$$

Show clear algebraic working.

Question 8 continued

Figure 4
Figure 4 shows a histogram that gives information about the time, in minutes, each of 440 people spent in a supermarket.

Two people are chosen at random from the 440 people.
Calculate an estimate, to 3 significant figures, for the probability that both of these people spent more than 45 minutes in the supermarket.

Question 9 continued

Diagram NOT accurately drawn

Figure 5
Figure 5 shows a cuboid with width $2 x \mathrm{~cm}$, height $2 x \mathrm{~cm}$ and length $y \mathrm{~cm}$.
Given that the total surface area of the cuboid is $240 \mathrm{~cm}^{2}$
(a) show that

$$
x^{2}+x y-30=0
$$

(b) Using calculus, calculate the exact value of x for which the volume of the cuboid is a maximum.

Question 10 continued

11 The three functions, f, g and h, are defined as

$$
\begin{aligned}
& \mathrm{f}: x \mapsto x^{2}+3 x-4 \\
& \mathrm{~g}: x \mapsto 2 x+3 \\
& \mathrm{~h}: x \mapsto \frac{x}{3 x-25}
\end{aligned}
$$

(a) Write down the value of x that must be excluded from any domain of h.
(b) Find f(6)
(c) Solve the equation $\mathrm{h}(x)=7$
(d) Find $\mathrm{hg}(4)$
(e) Express the inverse function h^{-1} in the form $\mathrm{h}^{-1}: x \mapsto \ldots$
(f) Solve the equation $\operatorname{fg}(x)=0$

Question 11 continued

Question 11 continued

